Clinical and Radiological Outcome following MIS-TLIF and Open-TLIF between Asian and African Population- A Comparative Retrospective Analysis in 104 Patients

Volume 3 | Issue 1 | April-September 2022 | page: 14-19 | Hitesh N. Modi, Utsab Shreshtha


Authors: Hitesh N. Modi [1], Utsab Shreshtha [1]

[1] Department of Spine Surgery, Zydus Hospitals and Healthcare Research Pvt. Ltd., Thaltej, Ahmedabad, Gujarat, India.

Address of Correspondence
Dr. Hitesh N. Modi,
Department of Spine Surgery, Zydus Hospitals and Healthcare Research Pvt. Ltd., Thaltej, Ahmedabad, Gujarat, India.


Purpose: This study aimed to evaluate pre-operative and post-operative sagittal parameters using pelvic incidence (PI), lumbar lordosis (LL), and segmental lordosis (SL) between Asian and African population who underwent minimally invasive surgery-transforaminal lumbar interbody fusion (MIS-TLIF) and open-TLIF surgeries. Study compares blood loss, operative time, and hospital stay; and evaluates disability and pain by Oswestry disability index (ODI) and visual analog scale (VAS) score, respectively, in both groups.
Methods: This retrospective study included 104 patients with an average age of 52.1 ± 12.9 years. All were operated for open-TLIF and MIS-TLIF for one- or two-level lumbar canal stenosis or spondylolisthesis. Patients were divided into two groups according to race: Asian and African. Clinical improvements were evaluated using VAS and ODI scores. Modified MacNab’s criteria were used to evaluate outcome. Estimated blood loss, hospital stay, operative time, perioperative morbidity, and complications were reviewed. On radiological parameters, patients’ LL, PI, and SL were compared between two groups.
Results: Average follow-up was 40.6 ± 13.9 months. Both groups showed significant post-operative improvement in their VAS and ODI scores in both open- and MIS-TLIF (P < 0.0001); however, comparing clinical improvement between Asian and African groups, it did not show significant difference in VAS (P = 0.103) and ODI (P = 0.077). Both groups showed significant improvement in LL and SL in both open- and MIS-TLIF (P < 0.0001); however, there was no change in PI. It did not show any significant difference in improvement in LL (P = 0.156), PI (P = 0.798), and SL (P = 0.179) between Asian and African groups. Regarding post-operative complications, there were 4 (6.9%) and 3 (6.5%) complications occurred in Asian and African population, respectively. There were no difference in complication rates in both groups (P = 0.939).
Discussion: TLIF (MIS and open) gives similar clinical outcome between Asian and African population. Sagittal parameters were higher in African population than the Asian population. Attention should be paid to predetermine the value of LL to achieve during surgery.
Keywords: Transforaminal lumbar interbody fusion, Asian versus African, Sagittal parameters, Clinical outcome.


1. Liu V, Weill D, Bhattacharya J. Racial disparities in survival after lung transplantation. Arch Surg 2011;146:286-93.
2. McClelland S 3rd, Guo H, Okuyemi KS. Morbidity and mortality following acoustic neuroma excision in the United States: analysis of racial disparities during a decade in the radiosurgery era. Neuro Oncol 2011;13:1252-9.
3. Drazin D, Shweikeh F, Lagman C, Ugiliweneza B, Boakye M. Racial disparities in elderly patients receiving lumbar spinal stenosis surgery. Global Spine J 2017;7:162-9.
4. Cahill KS, Chi JH, Day A, Claus EB. Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. JAMA 2009;302:58-66.
5. Harms J, Rolinger H. A one-stager procedure in operative treatment of spondylolistheses: Dorsal traction-reposition and anterior fusion (author’s transl). Z Orthop Ihre Grenzgeb 1982;120:343-7.
6. Foley KT, Holly LT, Schwender JD. Minimally invasive lumbar fusion. Spine (Phila Pa 1976) 2003;28 Suppl 15:S26-35.
7. Styf JR, Willén J. The effects of external compression by three different retractors on pressure in the erector spine muscles during and after posterior lumbar spine surgery in humans. Spine (Phila Pa 1976) 1998;23:354-8.
8. Kim CH, Lee CH, Kim KP. How high are radiation-related risks in minimally invasive transforaminal lumbar interbody fusion compared with traditional open surgery? A meta-analysis and dose estimates of ionizing radiation. Clin Spine Surg 2016;29:52-9.
9. Nandyala SV, Fineberg SJ, Pelton M, Singh K. Minimally invasive transforaminal lumbar interbody fusion: One surgeon’s learning curve. Spine J 2014;14:1460-5.
10. Ryang YM, Villard J, Obermüller T, Friedrich B, Wolf P, Gempt J, et al. Learning curve of 3D fluoroscopy image-guided pedicle screw placement in the thoracolumbar spine. Spine J 2015;15:467-76.
11. Park Y, Lee SB, Seok SO, Jo BW, Ha JW. Perioperative surgical complications and learning curve associated with minimally invasive transforaminal lumbar interbody fusion: A single-institute experience. Clin Orthop Surg 2015;7:91-6.
12. Ng CL, Pang BC, Medina PJ, Tan KA, Dahshaini S, Liu LZ. The learning curve of lateral access lumbar interbody fusion in an Asian population: A prospective study. Eur Spine J 2015;24 Suppl 3:361-8.
13. Arima H, Dimar JR 2nd, Glassman SD, Yamato Y, Matsuyama Y, Mac-Thiong JM, et al. Differences in lumbar and pelvic parameters among African American, Caucasian and Asian populations. Eur Spine J 2018;27:2990-8.
14. Jain A, Menga E, Mesfin A. Outcomes following surgical management of Cauda Equina syndrome: Does race matter? J Racial Ethn Health Disparities 2018;5:287-92.
15. Seicean A, Seicean S, Neuhauser D, Benzel EC, Weil RJ. The influence of race on short-term outcomes after laminectomy and/or fusion spine surgery. Spine (Phila Pa 1976) 2017;42:34-41.
16. Rantanen J, Hurme M, Falck B, Alaranta H, Nykvist F, Lehto M, et al. The lumbar multifidus muscle five years after surgery for a lumbar intervertebral disc herniation. Spine (Phila Pa 1976) 1993;18:568-74.
17. Sihvonen T, Herno A, Paljärvi L, Airaksinen O, Partanen J, Tapaninaho A. Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine (Phila Pa 1976) 1993;18:575-81.
18. Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. A histologic and enzymatic analysis. Spine (Phila Pa 1976) 1996;21:941-4.
19. Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. Part 2: Histologic and histochemical analyses in humans. Spine (Phila Pa 1976) 1994;19:2598-602.
20. Mayer TG, Vanharanta H, Gatchel RJ, Mooney V, Barnes D, Judge L, et al. Comparison of CT scan muscle measurements and isokinetic trunk strength in postoperative patients. Spine (Phila Pa 1976) 1989;14:33-6.
21. Berthonnaud E, Dimnet J, Roussouly P, Labelle H. Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. J Spinal Disord Tech 2005;18:40-7.
22. Zhao J, Zhang S, Li X, He B, Ou Y, Jiang D. Comparison of minimally invasive and open transforaminal lumbar interbody fusion for lumbar disc herniation: A retrospective cohort study. Med Sci Monit 2018;24:8693-8.
23. Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F. The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976) 2005;30:2024-9.
24. Suk KS, Kim KT, Lee SH, Kim JM. Significance of chin-brow vertical angle in correction of kyphotic deformity of ankylosing spondylitis patients. Spine (Phila Pa 1976) 2003;28:2001-5.
25. Legaye J, Duval-Beaupère G, Hecquet J, Marty C. Pelvic incidence: A fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 1998;7:99-103.
26. Burkus M, Schlégl AT, O’Sullivan I, Márkus I, Vermes C, Tunyogi-Csapó M. Sagittal plane assessment of spino-pelvic complex in a Central European population with adolescent idiopathic scoliosis: A case control study. Scoliosis Spinal Disord 2018;13:10.
27. Sullivan TB, Marino N, Reighard FG, Newton PO. Relationship between lumbar lordosis and pelvic incidence in the adolescent patient: Normal cohort analysis and literature comparison. Spine Deform 2018;6:529-36.
28. Mac-Thiong JM, Labelle H, Berthonnaud E, Betz RR, Roussouly P. Sagittal spinopelvic balance in normal children and adolescents. Eur Spine J 2007;16:227-34.
29. Ould-Slimane M, Lenoir T, Dauzac C, Rillardon L, Hoffmann E, Guigui P, et al. Influence of transforaminal lumbar interbody fusion procedures on spinal and pelvic parameters of sagittal balance. Eur Spine J 2012;21:1200-6.
30. Recnik G, Košak R, Vengust R. Influencing segmental balance in isthmic spondylolisthesis using transforaminal lumbar interbody fusion. J Spinal Disord Tech 2013;26:246-51.
31. Massie LW, Zakaria HM, Schultz LR, Basheer A, Buraimoh MA, Chang V. Assessment of radiographic and clinical outcomes of an articulating expandable interbody cage in minimally invasive transforaminal lumbar interbody fusion for spondylolisthesis. Neurosurg Focus 2018;44:E8.
32. Barbagallo GM, Piccini M, Alobaid A, Al-Mutair A, Albanese V, Certo F. Bilateral tubular minimally invasive surgery for low-dysplastic lumbosacral lytic spondylolisthesis (LDLLS): analysis of a series focusing on postoperative sagittal balance and review of the literature. Eur Spine J 2014;23 Suppl 6:705-13.
33. Rajakumar DV, Hari A, Krishna M, Sharma A, Reddy M. Complete anatomic reduction and monosegmental fusion for lumbar spondylolisthesis of Grade II and higher: Use of the minimally invasive “rocking” technique. Neurosurg Focus 2017;43:E12.
34. Hsieh PC, Koski TR, O’Shaughnessy BA, Sugrue P, Salehi S, Ondra S, et al. Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion: implications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance. J Neurosurg Spine 2007;7:379-86.
35. Champagne PO, Walsh C, Diabira J, Plante ME, Wang Z, Boubez G, et al. Sagittal balance correction following lumbar interbody fusion: A comparison of the three approaches. Asian Spine J 2019;13:450-8.
36. Marty C, Boisaubert B, Descamps H, Montigny JP, Hecquet J, Legaye J, et al. The sagittal anatomy of the sacrum among young adults, infants, and spondylolisthesis patients. Eur Spine J 2002;11:119-25.

How to Cite this Article: Modi HN, Shreshtha U |  Clinical and Radiological Outcome following MIS-TLIF and Open- TLIF between Asian and African Population- a Comparative Retrospective Analysis in 104 Patients | Back Bone: The Spine Journal | April-September 2022; 3(1): 14-19.


(Abstract Text HTML)      (Download PDF)


Hemodynamic Neuromonitoring, a Proposed Spino-Cardiac Protective Reflex: Prospective Study in 200 Patients of Lumbar Surgery

Volume 2 | Issue 2 | October 2021-March 2022 | page: 71-78 | Ajay Krishnan, Devanand Degulmadi, Ravi Ranjan, Shivanand Mayi, Namit Nitherwal, Lingraj Reddy, Ankur Patel, Iboyama Singh, Mirant Dave, Kashyap R Shah, Paresh A Mehta, Shaunak Dudhia, Bharat R Dave

DOI: 10.13107/bbj.2022.v02i02.024

Authors: Ajay Krishnan [1], Devanand Degulmadi [1], Ravi Ranjan [1], Shivanand Mayi [1], Namit Nitherwal [1], Lingraj Reddy [1], Ankur Patel [1], Iboyama Singh [1], Mirant Dave [1], Kashyap R Shah [2], Paresh A Mehta [3], Shaunak Dudhia [3], Bharat R Dave [1]

[1] Department of Spine Surgery, Stavya Spine Hospital and Research Institute, Mithakali, Ahmedabad, Gujarat, India.
[2] Department of Medicine, Stavya Spine Hospital and Research Institute, Mithakali, Ahmedabad, Gujarat, India.
[3] Department of Anaesthesia, Stavya Spine Hospital and Research Institute, Mithakali, Ahmedabad, Gujarat, India.

Address of Correspondence
Dr. Ajay Krishnan,
Consultant spine surgeon, Stavya Spine Hospital and Research Institute, Mithakali, Ahmedabad , Gujarat, India.


Background: Parasympathomimetic reflexes are reported in literature in spine surgery. Our primary hypothesis is proposed that nociceptive stimuli can be elicited by various maneuvers of lumbar spinal surgery and the physiological manifestation depends on many patient variables and anesthesia. However, a sympathomimetic pathological response is indicative of potential neural damages, which may or may not be reversible. A spino-cardiac protective reflex (SPR), as a new entity for lumbar spinal surgery, is proposed.
Study Design: This was a prospective single institution.
Materials and Methods: All the patients who were undergoing single motion segment transforaminal lumbar interbody fusion (TLIF) in our institute for lumbar disc herniation or non-discogenic lumbar stenosis lumbar spinal stenosis were included who fitted into inclusion criteria till 200 subjects were recruited. Patients’ pertinent vital data were collected at clinical first pre-operative visit and preoperatively on admission. The intraoperative parameters were recorded: Pre-induction, post-induction, post-positioning, before skin incision, after skin/subcutaneous exposure, pre-screw insertion, after screw insertion, after rod connection and distraction, during central decompression-laminotomy/laminectomy, during lateral recess decompression, discectomy, and segmental compression. Significant pulse rate (PR) and mean arterial pressure (MAP) changes were monitored and correlated.
Results: In the enrolled 200 patients, the change in mean MAP and PR changes in varying steps of TLIF was not significant. The positivity of a significant change in MAP and PR correlating with an evident manipulative/pathological-demographic cause was noted (plausibility), which could revert back to baseline (reversibility) after addressing the culprit in 22 cases. Non-correlating raise was also noted in 35 cases.
Conclusion: Spino-protective reflex exists like any reflex in body. Prospective study on huge database needs to be done to validate these observations. However, this study does make the surgeon think for finding clues to neurological damage or left out residual compressions which can be identified and rectified in real time in many cases. INOM is the standard of care and SPR should be compared with intraoperative neuromonitoring to identify sensitivity and threshold of pathological response in future studies.
Keywords: Lumbar, Protective, Reflex, Spine, Sympathomimetic, Transforaminal lumbar interbody fusion


1. Chowdhury T, Petropolis A, Cappellani RB. Cardiac emergencies in neurosurgical patients. BioMed Res Int 2015;2015:751320.
2. Chowdhury T, Schaller B. The negative chronotropic effect during lumbar spine surgery. Medicine 2017;96:e5436.
3. Doyle DJ, Mark PW. Reflex bradycardia during surgery. Can J Anaesth 1990;37:219-22.
4. Hainsworth R. Reflexes from the heart. Physiol Rev 1991;71:617-58.
5. Matsumura K, Miura K, Takata Y, Kurokawa H, Kajiyama M, Abe I, et al. Changes in blood pressure and heart rate variability during dental surgery. Am J Hypertens 1998;11:1376-80.
6. Deschamps A, Carvalho G. Lumbo-sacral spine surgery and severe bradycardia (Letter). Can J Anesth 2004;51:277.
7. Mandal N. More on lumbo-sacral spine surgery and bradycardia (Letter). Can J Anaesth 2004;51:942.
8. Dooney N. Prone CPR for transient asystole during lumbosacral spinal surgery. Anaesth Intensive Care 2010;38:212-3.
9. Chowdhury T, Sapra H, Dubey S. Severe hypotension in transforaminal lumbar interbody fusion surgery: Is it vasovagal or? Asian J Neurosurg 2017;12:149-50.
10. Chowdhury T, Narayanasamy S, Dube SK, Rath GP. Acute hemodynamic disturbances during lumbar spine surgery. J Neurosurg Anesthesiol 2012;24:80-1.
11. Nash CL Jr., Lorig RA, Schatzinger LA, Brown RH. Spinal cord monitoring during operative treatment of the spine. Clin Orthop Relat Res 1977;126:100-5.
12. Devlin VJ, Schwartz DM. Intraoperative neurophysiologic monitoring during spinal surgery. J Am Acad Orthop Surg 2007;15:549-60.
13. Mysliwiec LW, Cholewicki J, Winkelpleck MD, Eis GP. MSU classification for herniated lumbar discs on MRI: Toward developing objective criteria for surgical selection. Eur Spine J 2010;19:1087-93.
14. Schizas C, Theumann N, Burn A, Tansey R, Wardlaw D, Smith FW, et al. Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine (Phila Pa 1976) 2010;35:1919-24.
15. UK National Institute for Health and Care Excellence. Low Back Pain and Sciatica in Over 16s: Assessment and Management; 2016. Available from: [Last accessed on 2017 Nov 07].
16. Swift A. Understanding pain and the human body’s response to it. Nurs Times 2018;114:22-6.
17. Ditunno JF, Little JW, Tessler A, Burns AS. Spinal shock revisited: A four-phase model. Spinal Cord 2004;42:383-95.
18. Krassioukov A. Autonomic function following cervical spinal cord injury. Respir Physiol Neurobiol 2009;169:157-64.
19. Wallin BG, Stjernberg L. Sympathetic activity in man after spinal cord injury. Brain 1984;107:183-98.
20. Krassioukov A, Warburton DE, Teasell R, Eng JJ. Spinal cord injury rehabilitation evidence research team. A systematic review of the management of autonomic dysreflexia after spinal cord injury. Arch Phys Med Rehabil 2009;90:682-95.
21. Karlsson AK Autonomic dysreflexia. Spinal Cord 1999;37:383-91.
22. Groen GJ, Baljet B, Drukker J. The innervation of the spinal dura mater: Anatomy and clinical implications. Acta Neurochirur 1988;92:39-46.
23. Bogduk N. The innervation of the lumbar spine. Spine 1983;8:286-93.
24. Bridge CJ. Innervation of spinal meninges and epidural structures. Anat Gec 1959;133:553-61.
25. Pedersen HE, Blunck CF, Gardner E. The anatomy of lumbosacral posterior rami and meningeal branches of spinal nerves (sinu-vertebral nerves). J Bone Joint Surg 1956;38:377-91.
26. Stilwell DL. The nerve supply of the vertebral column and its associated structures in the monkey. Anat Rec 1956;125:139-169.
27. Meglio M, Cioni B, Dei Lago A, De Santis M, Pola P, Serrichio M. Pain control and improvement of peripheral blood flow following spinal cord stimulation. J Neurosurg 1981;54:821-3.
28. Musizza B, Ribaric S. Monitoring the depth of anaesthesia. Sensors 2010;10:10896-935.
29. Kaul H, Bharti N. Monitoring the depth of anaesthesia. Indian J Anaesth 2002;46:323-32.
30. Wiedemayer H, Sandalcioglu IE, Armbruster W, Regel J, Schaefer H, Stolke D. False negative findings in intraoperative SEP monitoring: Analysis of 658 consecutive neurosurgical cases and review of published reports. J Neurol Neurosurg Psychiatry 2004;75:280-6.
31. Cole T, Veeravagu A, Zhang M, Li A, Ratliff JK. Intraoperative neuromonitoring in single-level spinal procedures. Spine 2014;39:1950-9.
32. Prys-Roberts C. Anaesthesia: A practical or impossible construct (editorial). Br J Anaesth 1987;59:1341.
33. Poon KS, Wu KC, Chen CC, Fung ST, Lau AW, Huang CC, et al. Hemodynamic changes during spinal surgery in the prone position. Acta Anaesthesiol Taiwan 2008;46:57-60.
34. Savitha KS, Dhanpal R, Vikram MS. Hemodynamic responses at intubation, change of position, and skin incision: A comparison of multimodal analgesia with conventional analgesic regime. Anaesth Essays Res 2017;11:314-20.
35. Gruenewald M, Ilies C. Monitoring the nociception-anti-nociception balance. Best Pract Res Clin Anaesthesiol 2013;27:235-47.
36. Hu HT, Ren L, Sun XZ, Liu FY, Yu JH, Gu ZF. Contralateral radiculopathy after transforaminal lumbar interbody fusion in the treatment of lumbar degenerative diseases: A case series. Medicine (Baltimore) 2018;97:e0469.
37. Jang KM, Park SW, Kim YB, Park YS, Nam TK, Lee YS. Acute contralateral radiculopathy after unilateral transforaminal lumbar interbody fusion. J Korean Neurosurg Soc 2015;58:350-6.
38. Bärlocher CB, Krauss JK, Seiler RW. Central lumbar disc herniation. Acta Neurochir (Wien) 2000;142:1369-74.
39. Choi JW, Lee JK, Moon KS, Hur H, Kim YS, Kim SH. Transdural approach for calcified central disc herniations of the upper lumbar spine. J Neurosurg Spine 2007;7:370-4.
40. Kim DS, Lee JK, Jang JW, Ko BS, Lee JH, Kim SH. Clinical features and treatments of upper lumbar disc herniations. J Korean Neurosurg Soc 2010;48:119-24.
41. Podnar S. Cauda equina lesions as a complication of spinal surgery. Eur Spine J 2010;19:451-7.
42. Raw DA, Beattie JK, Hunter JM. Anaesthesia for spinal surgery in adults. Br J Anaesth 200391:886-904.
43. Schnider TW, Minto CF, Struys MM, Absalom AR. The safety of target-controlled infusions. Anesth Analg 2016;122:79-85.
44. Mahajan S, Swami AC, Kumar A. Cardiovascular changes and lumbar spine surgery: A neglected entity. Asian J Neurosurg 2019;14:1253-5.
45. Chavali S, Das K, Sokhal S, Rath GP. Reflex bradycardia due to traction on filum terminale during detethering of spinal cord. Neurol India 2019;67:889-90.
46. Marie JR, Jennifer S, Alexander PH, Andrew AS, Ronald GE, Carrie G, et al. Hemodynamically significant cardiac arrhythmias during general anesthesia for spine surgery: A case series and literature review. N Am Spine Soc J 2020;2:100010.
47. Morano JM, Tung A. Bradycardic arrest during somatosensory-evoked potential monitoring. A A Pract 2019;13:461-3.

How to Cite this Article: Krishnan A, Degulmadi D, Ranjan R, Mayi S, Nitherwal N, Reddy L, Patel A, Singh I, Dave M, Shah KR, Mehta PA, Dudhia S, Dave BR Hemodynamic | Neuromonitoring, a Proposed Spino- Cardiac Protective Reflex: Prospective Study in 200 Patients of Lumbar Surgery | Back Bone: The Spine Journal | October 2021-March 2022; 2(2): 71-78.

(Abstract Text HTML)      (Download PDF)


Minimally Invasive Trans-foraminal Lumbar Interbody Fusion (MI-TLIF): Technique, Tips and Tricks.

Volume 2 | Issue 2 | October 2021-March 2022 | page: 60-64 | Sanjeev Asati, Saijyot Raut, Vishal Kundnani, Amit Chugh, Ameya Rangekar, Praveen VNR Goparaju
DOI: 10.13107/bbj.2022.v02i02.023

Authors: Sanjeev Asati [1], Saijyot Raut [1], Vishal Kundnani [1], Amit Chugh [1], Ameya Rangekar [1], Praveen VNR Goparaju [1]

[1] Department of Spine Surgery, Bombay Hospital & Medical Research Centre, Mumbai, Maharashtra, India.
[2] Mumbai Spine Scoliosis and Disc Replacement Centre, Mumbai, Maharashtra, India.

Address of Correspondence
Dr. Saijyot Raut,
Clinical spine fellow, Bombay Hospital & Medical Research Centre & Mumbai Spine Scoliosis and Disc Replacement Centre, Mumbai, Maharashtra, India.


Surgical interbody fusion is the main stay of treatment in many lumbar pathologies. Of these, transforaminal lumbar interbody fusion has progressively gained popularity among fusions due to its safety and satisfactory results. With the ever-ending evolution of technological advancements enabled spine surgeons to embrace minimally invasive surgeries mainly due to focal nature of the pathology. Tubular retractors have been tried and tested with very good results when used with microscopic magnification. They helps in surgical decompression and fusion through transforaminal approach with minimal footprint and have proven their versatility by delivering excellent outcomes. Near total bloodless surgery, better cosmesis, decreased hospital stay, lower pain score, early return to work, are some other proven advantages with minimally invasive transforaminal interbody fusion MIS-TLIF. However, high procedural costs and longer trajectory of learning is restraining many surgeons from adapting this technique over time tested open procedures. In this report the authors discuss about the nuances of the surgical procedure, tips and tricks to provide a comprehensive insight and better understanding.

Keywords: MIS-TLIF, Minimally invasive spine surgery, Transforaminal lumbar interbody fusion.


1. Stonecipher T, Wright S (1989) Posterior lumbar interbody fusion with facet screw fixation. Spine 14:468–47.
2. Fraser RD (1995) Interbody, posterior, and combined lumbar fusions. Spine 20:S167–S177.
3. Harms J, Jeszenszky D (1998) The unilateral transforaminal approach for posterior lumbar interbody fusion. Orthop Traumatol 6:88–99.
4. Foley KT, Holly LT, Schwender JD (2003) Minimally invasive lumbar fusion. Spine 15(suppl):26–35.
5. Jin-Tao Q, Yu T, MeiW, et al. Comparison of MIS vs. open PLIF/ TLIF with regard to clinical improvement, fusion rate, and incidence of major complication: a meta analysis. Eur Spine J. 2015;24:1058-1065.
6. Khan NR, Clark AJ, Lee SL, Venable GT, Rossi NB, Foley KT. Surgical outcomes for minimally invasive vs open transforaminal lumbar interbody fusion: an updated systematic review and metaanalysis. Neurosurgery. 2015;77:847-874.
7. Adogwa O, Parker SL, Bydon A, Cheng J, McGirt MJ. Comparative effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion: 2-year assessment of narcotic use, return to work, disability, and quality of life. J Spinal Disord Tech. 2011;24:479-484.
8. Gu G, Zhang H, Fan G, et al. Comparison of minimally invasive versus open transforaminal lumbar interbody fusion in two-level degenerative lumbar disease. Int Orthop. 2014;38:817-824.
9. Kulkarni AG, Patel RS, Dutta S. Does minimally invasive spine surgery minimize surgical site infections? Asian Spine J. 2016;10: 1000-1006.
10. Kim KT, Lee SH, Suk KS, Bae SC. The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine (Phila Pa 1976) 2006;31:712-6.
11. Kim DY, Lee SH, Chung SK, Lee HY. Comparison of multifidus muscle atrophy and trunk extension muscle strength: Percutaneous versus open pedicle screw fixation. Spine (Phila Pa 1976) 2005;30:123-9.
12. Shunwu F, Xing Z, Fengdong Z, Xiangqian F (2010) Minimally invasive transforaminal lumbar interbody fusion for the treatment of degenerative lumbar diseases. Spine 35:1615–1620.
13. Wang HL, Lu FZ, Jiang JY, Ma X, Xia XL, Wang LX (2011) Minimally invasive lumbar interbody fusion via MAST Quadrant retractor versus open surgery: a prospective randomized clinical trial. Chin Med J (Engl) 124:3868–3874.
14. Kim CW, Lee YP, Taylor W, Oygar A, Kim WK (2008) Use of navigation-assisted fluoroscopy to decrease radiation exposure during minimally invasive spine surgery. Spine J 8:584–590.
15. Tjardes T, Shafizadeh S, Rixen D, Paffrath T, Bouillon B, Steinhausen ES, Baethis H (2010) Image-guided spine surgery: state of the art and future directions. Eur Spine J 19:25–45.

How to Cite this Article: Asati S, Raut S, Kundnani V, Chugh A, Rangekar A, Goparaju P VNR | Minimally Invasive Trans-foraminal Lumbar Interbody Fusion (MI-TLIF): Technique, Tips and Tricks. | Back Bone: The Spine Journal | October 2021-March 2022; 2(2): 60-64.


(Abstract Text HTML)      (Download PDF)