Minimally Invasive Trans-foraminal Lumbar Interbody Fusion (MI-TLIF): Technique, Tips and Tricks.

Volume 2 | Issue 2 | October 2021-March 2022 | page: 60-64 | Sanjeev Asati, Saijyot Raut, Vishal Kundnani, Amit Chugh, Ameya Rangekar, Praveen VNR Goparaju
DOI: 10.13107/bbj.2022.v02i02.023

Authors: Sanjeev Asati [1], Saijyot Raut [1], Vishal Kundnani [1], Amit Chugh [1], Ameya Rangekar [1], Praveen VNR Goparaju [1]

[1] Department of Spine Surgery, Bombay Hospital & Medical Research Centre, Mumbai, Maharashtra, India.
[2] Mumbai Spine Scoliosis and Disc Replacement Centre, Mumbai, Maharashtra, India.

Address of Correspondence
Dr. Saijyot Raut,
Clinical spine fellow, Bombay Hospital & Medical Research Centre & Mumbai Spine Scoliosis and Disc Replacement Centre, Mumbai, Maharashtra, India.


Surgical interbody fusion is the main stay of treatment in many lumbar pathologies. Of these, transforaminal lumbar interbody fusion has progressively gained popularity among fusions due to its safety and satisfactory results. With the ever-ending evolution of technological advancements enabled spine surgeons to embrace minimally invasive surgeries mainly due to focal nature of the pathology. Tubular retractors have been tried and tested with very good results when used with microscopic magnification. They helps in surgical decompression and fusion through transforaminal approach with minimal footprint and have proven their versatility by delivering excellent outcomes. Near total bloodless surgery, better cosmesis, decreased hospital stay, lower pain score, early return to work, are some other proven advantages with minimally invasive transforaminal interbody fusion MIS-TLIF. However, high procedural costs and longer trajectory of learning is restraining many surgeons from adapting this technique over time tested open procedures. In this report the authors discuss about the nuances of the surgical procedure, tips and tricks to provide a comprehensive insight and better understanding.

Keywords: MIS-TLIF, Minimally invasive spine surgery, Transforaminal lumbar interbody fusion.


1. Stonecipher T, Wright S (1989) Posterior lumbar interbody fusion with facet screw fixation. Spine 14:468–47.
2. Fraser RD (1995) Interbody, posterior, and combined lumbar fusions. Spine 20:S167–S177.
3. Harms J, Jeszenszky D (1998) The unilateral transforaminal approach for posterior lumbar interbody fusion. Orthop Traumatol 6:88–99.
4. Foley KT, Holly LT, Schwender JD (2003) Minimally invasive lumbar fusion. Spine 15(suppl):26–35.
5. Jin-Tao Q, Yu T, MeiW, et al. Comparison of MIS vs. open PLIF/ TLIF with regard to clinical improvement, fusion rate, and incidence of major complication: a meta analysis. Eur Spine J. 2015;24:1058-1065.
6. Khan NR, Clark AJ, Lee SL, Venable GT, Rossi NB, Foley KT. Surgical outcomes for minimally invasive vs open transforaminal lumbar interbody fusion: an updated systematic review and metaanalysis. Neurosurgery. 2015;77:847-874.
7. Adogwa O, Parker SL, Bydon A, Cheng J, McGirt MJ. Comparative effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion: 2-year assessment of narcotic use, return to work, disability, and quality of life. J Spinal Disord Tech. 2011;24:479-484.
8. Gu G, Zhang H, Fan G, et al. Comparison of minimally invasive versus open transforaminal lumbar interbody fusion in two-level degenerative lumbar disease. Int Orthop. 2014;38:817-824.
9. Kulkarni AG, Patel RS, Dutta S. Does minimally invasive spine surgery minimize surgical site infections? Asian Spine J. 2016;10: 1000-1006.
10. Kim KT, Lee SH, Suk KS, Bae SC. The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine (Phila Pa 1976) 2006;31:712-6.
11. Kim DY, Lee SH, Chung SK, Lee HY. Comparison of multifidus muscle atrophy and trunk extension muscle strength: Percutaneous versus open pedicle screw fixation. Spine (Phila Pa 1976) 2005;30:123-9.
12. Shunwu F, Xing Z, Fengdong Z, Xiangqian F (2010) Minimally invasive transforaminal lumbar interbody fusion for the treatment of degenerative lumbar diseases. Spine 35:1615–1620.
13. Wang HL, Lu FZ, Jiang JY, Ma X, Xia XL, Wang LX (2011) Minimally invasive lumbar interbody fusion via MAST Quadrant retractor versus open surgery: a prospective randomized clinical trial. Chin Med J (Engl) 124:3868–3874.
14. Kim CW, Lee YP, Taylor W, Oygar A, Kim WK (2008) Use of navigation-assisted fluoroscopy to decrease radiation exposure during minimally invasive spine surgery. Spine J 8:584–590.
15. Tjardes T, Shafizadeh S, Rixen D, Paffrath T, Bouillon B, Steinhausen ES, Baethis H (2010) Image-guided spine surgery: state of the art and future directions. Eur Spine J 19:25–45.

How to Cite this Article: Asati S, Raut S, Kundnani V, Chugh A, Rangekar A, Goparaju P VNR | Minimally Invasive Trans-foraminal Lumbar Interbody Fusion (MI-TLIF): Technique, Tips and Tricks. | Back Bone: The Spine Journal | October 2021-March 2022; 2(2): 60-64.


(Abstract Text HTML)      (Download PDF)