Volume 3 | Issue 1 | April-September 2022 | page: 07-13 | Nandan A. Marathe, Pauras P. Mhatre, Sudeep Date, Ayush Sharma
DOI: https://doi.org/10.13107/bbj.2022.v03i01.033
Authors: Nandan A. Marathe [1], Pauras P. Mhatre [1], Sudeep Date [2], Ayush Sharma [3]
[1] Department of Orthopaedics, Seth G.S. Medical College & KEM Hospital, Mumbai, Maharashtra, India.
[2] Department of Orthopaedics, Cumberland Infirmary, Newtown Road, Carlisle CA2 7HY, United Kingdom.
[3] Consultant Spine Surgeon and Head of Spine unit, Railway Hospital, Mumbai, Maharashtra, India.
Address of Correspondence
Pauras P. Mhatre,
Seth G.S. Medical College & KEM Hospital, Mumbai, India.
E-mail: paurasmhatre@gmail.com
Abstract
Background: Advances in case selection, operative methods, and postsurgical care have facilitated spine surgeons to manage complex spine cases with short operative times, decreased hospital stay and improved outcomes.
Methods: This is an overview of recent updates and future directions in the field of spine surgery. All the articles were obtained through a literature review on PubMed.
Results: Minimally invasive spine procedures like Endoscopic spine surgeries, Oblique Lumbar Interbody Fusion, use of retractor systems, etc. are emerging in rapidly in modern world. Fusion surgeries are associated with adjacent level disease hence, motion preservation surgeries that mimic the natural biomechanics of the spine are being explored as alternatives. In view of risks to vital structures, nerve injury due to mal-positioning, etc.; robotic spine surgery has paved a way to allow surgeons real-time procedural manipulation along with instrument control, real-scale magnification. Many high-impact discoveries in cancer research, stereotactic radiotherapy, newer combinations of chemotherapy, and tumor-specific antibodies have increased our understanding of spine oncology. Past two decades have seen many advancements in treatment of spine deformities right from initial radiographic assessment, surgical planning to postoperative care.
Conclusion: All in all, all stakeholders in innovation including the industry, scientists and surgeons must work in an open and honest collaboration to benefit the future patients and continue the evolution in Spine Surgery.
Keywords: Spine surgery, Recent updates, Minimally invasive surgery, Artificial disc replacement, Artificial intelligence.
References
[1] Kazemi N, Crew LK, Tredway TL. The future of spine surgery: New horizons in the treatment of spinal disorders. Surg Neurol Int 2013;4:15–21. doi:10.4103/2152-7806.109186.
[2] Fehlings MG, Ahuja CS, Mroz T, Hsu W, Harrop J. Future advances in spine surgery: The AOSpine North America perspective. Clin Neurosurg 2017;80:S1–8. doi:10.1093/neuros/nyw112.
[3] Perez-Cruet MJ, Foley KT, Isaacs RE, Rice-Wyllie L, Wellington R, Smith MM, et al. Microendoscopic lumbar discectomy: technical note. Neurosurgery 2002;51:S129-36.
[4] Guiot BH, Khoo LT, Fessler RG. A minimally invasive technique for decompression of the lumbar spine. Spine (Phila Pa 1976) 2002;27:432–8. doi:10.1097/00007632-200202150-00021.
[5] O’Toole JE, Eichholz KM, Fessler RG. Minimally invasive insertion of syringosubarachnoid shunt for posttraumatic syringomyelia: Technical case report. Neurosurgery 2007;61:E331-2; discussion E332. doi:10.1227/01.neu.0000303990.03235.81.
[6] Ogden AT, Fessler RG. Minimally invasive resection of intramedullary ependymoma: Case report. Neurosurgery 2009;65:E1203-4; discussion E1204. doi:10.1227/01.NEU.0000360153.65238.F0.
[7] Tredway TL, Musleh W, Christie SD, Khavkin Y, Fessler RG, Curry DJ. A novel minimally invasive technique for spinal cord untethering. Neurosurgery 2007;60:ONS70-4; discussion ONS74. doi:10.1227/01.NEU.0000249254.63546.D7.
[8] Tredway TL, Santiago P, Hrubes MR, Song JK, Christie SD, Fessler RG. Minimally invasive resection of intradural-extramedullary spinal neoplasms. Neurosurgery 2006;58:ONS52-8; discussion ONS52-8. doi:10.1227/01.neu.0000192661.08192.1c.
[9] Sandhu FA, Santiago P, Fessler RG, Palmer S. Minimally invasive surgical treatment of lumbar synovial cysts. Neurosurgery 2004;54:107–11; discussion 111-2. doi:10.1227/01.neu.0000097269.79994.2f.
[10] Karikari IO, Isaacs RE. Minimally invasive transforaminal lumbar interbody fusion: A review of techniques and outcomes. Spine (Phila Pa 1976) 2010;35:S294-301. doi:10.1097/BRS.0b013e3182022ddc.
[11] Ozgur BM, Yoo K, Rodriguez G, Taylor WR. Minimally-invasive technique for transforaminal lumbar interbody fusion (TLIF). Eur Spine J 2005;14:887–94. doi:10.1007/s00586-005-0941-3.
[12] Kulkarni AG, Kantharajanna SB, Dhruv AN. The use of tubular retractors for translaminar discectomy for cranially and caudally extruded discs. Indian J Orthop 2018;52:328–33. doi:10.4103/ortho.IJOrtho_364_16.
[13] Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 2006;6:435–43. doi:10.1016/j.spinee.2005.08.012.
[14] Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM. A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: Perioperative outcomes and complications. Spine (Phila Pa 1976) 2010;35:S322-30. doi:10.1097/BRS.0b013e3182022e04.
[15] Hsieh PC, Koski TR, Sciubba DM, Moller DJ, O’Shaughnessy BA, Li KW, et al. Maximizing the potential of minimally invasive spine surgery in complex spinal disorders. Neurosurg Focus 2008;25:E19. doi:10.3171/FOC/2008/25/8/E19.
[16] Tormenti MJ, Maserati MB, Bonfield CM, Okonkwo DO, Kanter AS. Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus 2010;28:1–7. doi:10.3171/2010.1.FOCUS09263.
[17] Pimenta L, Oliveira L, Schaffa T, Coutinho E, Marchi L. Lumbar total disc replacement from an extreme lateral approach: Clinical experience with a minimum of 2 years’ follow-up: Clinical article. J Neurosurg Spine 2011;14:38–45. doi:10.3171/2010.9.SPINE09865.
[18] Jin C, Jaiswal MS, Jeun SS, Ryu KS, Hur JW, Kim JS. Outcomes of oblique lateral interbody fusion for degenerative lumbar disease in patients under or over 65years of age. J Orthop Surg Res 2018;13:1–10. doi:10.1186/s13018-018-0740-2.
[19] Yue JJ, Long W. Full endoscopic spinal surgery techniques: Advancements, indications, and outcomes. Int J Spine Surg 2015;9. doi:10.14444/2017.
[20] Blumenthal S, McAfee PC, Guyer RD, Hochschuler SH, Geisler FH, Holt RT, et al. A prospective, randomized, multicenter Food and Drug Administration Investigational Device Exemptions study of lumbar total disc replacement with the CHARITÉTM artificial disc versus lumbar fusion – Part I: Evaluation of clinical outcomes. Spine (Phila Pa 1976) 2005;30:1565–75. doi:10.1097/01.brs.0000170587.32676.0e.
[21] Guyer RD, McAfee PC, Hochschuler SH, Blumenthal SL, Fedder IL, Ohnmeiss DD, et al. Prospective randomized study of the Charité artificial disc: Data from two investigational centers. Spine J 2004;4:S252–9. doi:10.1016/j.spinee.2004.07.019.
[22] Geisler FH. The CHARITE Artificial Disc: design history, FDA IDE study results, and surgical technique. Clin Neurosurg 2006;53:223–8.
[23] Delamarter RB, Bae HW, Pradhan BB. Clinical results of ProDisc-II lumbar total disc replacement: Report from the United States clinical trial. Orthop Clin North Am 2005;36:301–13. doi:10.1016/j.ocl.2005.03.004.
[24] Sekhon LHS, Duggal N, Lynch JJ, Haid RW, Heller JG, Riew KD, et al. Magnetic resonance imaging clarity of the Bryan®, Prodisc-C®, Prestige LP®, and PCM® cervical arthroplasty devices. Spine (Phila Pa 1976) 2007;32:673–80. doi:10.1097/01.brs.0000257547.17822.14.
[25] Oskouian RJ, Whitehill R, Samii A, Shaffrey ME, Johnson JP, Shaffrey CI. The future of spinal arthroplasty: a biomaterial perspective. Neurosurg Focus 2004;17:E2. doi:10.3171/foc.2004.17.3.2.
[26] Robbins MM, Vaccaro AR, Madigan L. The use of bioabsorbable implants in spine surgery. Neurosurg Focus 2004;16:E1. doi:10.3171/foc.2004.16.3.2.
[27] Tafazal SI, Sell PJ. Incidental durotomy in lumbar spine surgery: Incidence and management. Eur Spine J 2005;14:287–90. doi:10.1007/s00586-004-0821-2.
[28] D’Andrea K, Dreyer J, Fahim DK. Utility of preoperative magnetic resonance imaging coregistered with intraoperative computed tomographic scan for the resection of complex tumors of the spine. World Neurosurg 2015;84:1804–15. doi:10.1016/j.wneu.2015.07.072.
[29] Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, et al. Accuracy of pedicle screw placement: A systematic review of prospective in vivo studies comparing free hand,fluoroscopy guidance and navigation techniques. Eur Spine J 2012;21:247–55. doi:10.1007/s00586-011-2011-3.
[30] Rampersaud YR, Lee KS. Fluoroscopic computer-assisted pedicle screw placement through a mature fusion mass: An assessment of 24 consecutive cases with independent analysis of computed tomography and clinical data. Spine (Phila Pa 1976) 2007;32:217–22. doi:10.1097/01.brs.0000251751.51936.3f.
[31] Roser F, Tatagiba M, Maier G. Spinal robotics: Current applications and future perspectives. Neurosurgery 2013;72:12–8. doi:10.1227/NEU.0b013e318270d02c.
[32] Overley SC, Cho SK, Mehta AI, Arnold PM. Navigation and Robotics in Spinal Surgery: Where Are We Now? Neurosurgery 2017;80:S86–99. doi:10.1093/neuros/nyw077.
[33] Lee JYK, Lega B, Bhowmick D, Newman JG, O’Malley BW, Weinstein GS, et al. Da vinci robot-assisted transoral odontoidectomy for basilar invagination. ORL 2010;72:91–5. doi:10.1159/000278256.
[34] Yang MS, Yoon DH, Kim KN, Kim H, Yang JW, Yi S, et al. Robot-assisted anterior lumbar interbody fusion in a swine model in vivo test of the da vinci surgical-assisted spinal surgery system. Spine (Phila Pa 1976) 2011;36:E139-43. doi:10.1097/BRS.0b013e3181d40ba3.
[35] Kim MJ, Ha Y, Yang MS, Yoon DH, Kim KN, Kim H, et al. Robot-assisted anterior lumbar interbody fusion (ALIF) using retroperitoneal approach. Acta Neurochir (Wien) 2010;152:675–9. doi:10.1007/s00701-009-0568-y.
[36] Ponnusamy K, Chewning S, Mohr C. Robotic approaches to the posterior spine. Spine (Phila Pa 1976) 2009;34:2104–9. doi:10.1097/BRS.0b013e3181b20212.
[37] Artibani W, Fracalanza S, Cavalleri S, Iafrate M, Aragona M, Novara G, et al. Learning curve and preliminary experience with da Vinci-assisted laparoscopic radical prostatectomy. Urol Int 2008;80:237–44. doi:10.1159/000127333.
[38] Holly LT, Foley KT. Intraoperative spinal navigation. Spine (Phila Pa 1976) 2003;28:S54-61. doi:10.1097/01.BRS.0000076899.78522.D9.
[39] Ughwanogho E, Patel NM, Baldwin KD, Sampson NR, Flynn JM. Computed tomography-guided navigation of thoracic pedicle screws for adolescent idiopathic scoliosis results in more accurate placement and less screw removal. Spine (Phila Pa 1976) 2012;37:E473-8. doi:10.1097/BRS.0b013e318238bbd9.
[40] Lee JH, Jang HL, Lee KM, Baek HR, Jin K, Hong KS, et al. In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology. Acta Biomater 2013;9:6177–87. doi:10.1016/j.actbio.2012.11.030.
[41] Schroeder GD, Hsu WK, Kepler CK, Kurd MF, Vaccaro AR, Patel AA, et al. Use of recombinant human bone morphogenetic protein-2 in the treatment of degenerative spondylolisthesis. Spine (Phila Pa 1976) 2016;41:445–9. doi:10.1097/BRS.0000000000001228.
[42] Zweckberger K, Ahuja CS, Liu Y, Wang J, Fehlings MG. Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury. Acta Biomater 2016;42:77–89. doi:10.1016/j.actbio.2016.06.016.
[43] Leckie AE, Akens MK, Woodhouse KA, Yee AJM, Whyne CM. Evaluation of thiol-modified hyaluronan and elastin-like polypeptide composite augmentation in early-stage disc degeneration: Comparing 2 minimally invasive techniques. Spine (Phila Pa 1976) 2012;37:E1296-303. doi:10.1097/BRS.0b013e318266ecea.
[44] Leung VYL, Tam V, Chan D, Chan BP, Cheung KMC. Tissue Engineering for Intervertebral Disk Degeneration. Orthop Clin North Am 2011;42:575–83. doi:10.1016/j.ocl.2011.07.003.
[45] He Z, Zhai Q, Hu M, Cao C, Wang J, Yang H, et al. Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: Current status and future developments. J Orthop Transl 2015;3:1–11. doi:10.1016/j.jot.2014.11.002.
[46] Girolami M, Boriani S, Bandiera S, Barbanti-Bródano G, Ghermandi R, Terzi S, et al. Biomimetic 3D-printed custom-made prosthesis for anterior column reconstruction in the thoracolumbar spine: a tailored option following en bloc resection for spinal tumors: Preliminary results on a case-series of 13 patients. Eur Spine J 2018;27:3073–83. doi:10.1007/s00586-018-5708-8.
[47] Smith JS, Shaffrey CI, Bess S, Shamji MF, Brodke D, Lenke LG, et al. Recent and Emerging Advances in Spinal Deformity. Neurosurgery 2017;80:S70–85. doi:10.1093/neuros/nyw048.
[48] Saindane AM. Recent Advances in Brain and Spine Imaging. Radiol Clin North Am 2015;53:477–96. doi:10.1016/j.rcl.2014.12.004.
[49] Mahboub-Ahari A, Hajebrahimi S, Yusefi M, Velayati A. EOS imaging versus current radiography: A health technology assessment study. Med J Islam Repub Iran 2016;30.
How to Cite this Article: Marathe NA, Mhatre PP, Date S, Sharma A | Spine Surgery: A Narrative Review About Recent Updates and Future Directions | Back Bone: The Spine Journal | April-September 2022; 3(1): 07-13. https://doi.org/10.13107/bbj.2022.v03i01.033
|
.